Code: 20CE6502

III B.Tech - I Semester - Regular Examinations - NOVEMBER 2024

ENVIRONMENTAL GEOTECHNIQUES (HONORS in CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks	
UNIT-I						
1	a)	Why are the soils containing	L2	CO1	7 M	
		montmorillonite often expansive in nature				
		whereas soils containing illite or kaolinite				
		are not?				
	b)	Explain the terms	L2	CO1	7 M	
		i.Specific surface area				
		ii. Diffuse double layer				
		iii.Adsorbed water				
		iv. Cation exchange capacity of soil				
OR						
2	a)	An inorganic clay has a liquid limit of 450%	L3	CO1	7 M	
		i.What is the most predominant mineral in				
		this soil?				
		ii. Explain high liquid limit in terms of				
		crystal structure of this mineral.				

	b)	Support your answers to parts (a) to (c) with sketches. i. Explain changes in hydraulic	L2	CO1	7 M		
		conductivity (k) based on micropore and macropore theories.					
		ii. How is k influenced by clay					
		mineralogy?					
		iii. For the same relative compaction, how					
		will k change with compaction moisture					
		content?					
	UNIT-II						
3	a)	Explain the diffused double layer (DDL) of	L2	CO2	7 M		
		expansive clay. What are the different					
		factors affect the DDL thickness?					
	b)	What is free swell index? Explain the testing	L2	CO2	7 M		
		procedure to determine the free swell index					
		of soil.					
	OR						
4	a)	Discuss the significance of pore water	L2	CO2	7 M		
		pressure in triaxial shear test? Explain the					
		pore pressure parameters as given by A.W.					
		Skempton.					
	b)	What are the assumptions in Terzaghi's one-	L2	CO2	7 M		
		dimensional consolidation theory? Explain					
		any two methods to determine the					
		coefficient of consolidation.					

UNIT-III								
5	a)	What are the major components of	L2	CO3	7 M			
		engineered landfill?						
	b)	What are the chemical and geo-technical	L2	CO3	7 M			
		properties of MSW? List its typical values.						
OR								
6	a)	Describe in detail factors need to be	L2	CO3	7 M			
		considered for landfill site characterization						
		and steps to be followed for landfill site						
		selection.						
	b)	How do you consider a suitable site for the	L2	CO3	7 M			
		construction of landfill in your locality?						
		UNIT-IV	T					
7	a)	Explain the differences in compacted clay	L2	CO4	7 M			
		liners (CCLs) and geosynthetic clay liners						
		(GCLs).						
	b)	How are the gases in landfill generated?	L2	CO4	7 M			
		What is the typical composition of landfill						
		gas?						
		OR						
8	a)	What are the primary components of a leak-	L2	CO4	7 M			
		detection system in a landfill?						
	b)	What are the requirements of compacted	L2	CO4	7 M			
		clay liners?						

UNIT-V								
9	a)	What are the key design criteria that must be	L2	CO5	7 M			
		considered when designing a landfill?						
	b)	Compare the thermal remediation & pump	L2	CO5	7 M			
		and treat methods for treating MSW in						
		landfills.						
		OR						
10	a)	Discuss how external dynamic forces can	L2	CO5	7 M			
		affect the performance of a landfill.						
	b)	Explain the terms	L2	CO5	7 M			
		i. Phytoremediation						
		ii. Bioremediation						